1. Give IR translations for:

(a) [break]r,

(b) [x]Lt,e (Where x is a variable)

(c) [e1lle2]rt,Ls (using short-circuit evaluation for e; and es)

(d) Generate code for the repeat-until statement: “repeat S until €” executes S and tests e,
and repeats until e becomes true. Thus, it is equivalent to “S; while le do S”.



2. Write APL expressions for the following calculations.

(a) the average of the numbers from 1 to n

(b) the sum of the squares of the elements of a vector V

(c) the product of all positive elements of a vector V

(d) a matrix with the numbers 1, 2, ..., n on the diagonal and 0 everywhere else. You may
use the function idmat(x) to produce the identity matrix of size x.

3. (a) Name the two parts of a compiler’s front end.

(b) Name the two parts of a compiler’s back end.



(c) What are the two outputs of the front end?

4. (a) Give two advantages of the copying garbage collection algorithm over the non-copying
(mark-and-sweep) algorithm.

(b) Give two advantages of the non-copying (mark-and-sweep) garbage collection algorithm
over the copying algorithm.

(c) Reference counting is not a popular algorithm. What is its major drawback?



D.

(a) What is the type of the following function? fun f-> fun g -> fun x -> f (g x)

(b) Write an OCaml function that reverses a list, using fold_right instead of explicit recursion.

(¢) Use map to write a function map_first f 1 which applies f to the first element of each item
in 1, assuming that 1 is a list of pairs.

(d) Write a function curry that converts a function f on pairs to curried form. In other
words, if f is defined by let f (x,y) = e for some expression e, curry f should return the
function g defined by let g x y = e.

(e) Using fold_right and no explicit recursion, define a function that concatenates the ele-
ments of a string list.



6. Recall that sets can be defined by type ’a set = ’a -> bool. For the following problems,
you may use any previously defined functions on sets, and any library functions from the List
library.

(a) Write an OCaml function add_list such that add_list Ist s returns a set that contains all
the elements of s, and also all the elements in Ist.

(b) Write an OCaml function has_list such that has_list Ist s returns true if every element of
Ist is in s, and false otherwise.

(c) Write an OCaml function image such that image f Ist returns the set of values produced
by applying f to the elements of Ist. You may use your solutions from the previous parts.



7. Write a function object for case_map (see the OCaml definition below). For the sake of
simplicity, we assume that f : int -> bool, g,h : int -> int.

let case_map f g h lis = map (fun x -> if (f x) then (g x) else (h x)) lis;;

Your answer:

interface BoolFun{
boolean apply(int n);
}
interface IntFun{
int apply(int n);
}

class Map{
static int[] map(IntFun f, int lis[]){
int 1is2[] = new int[lis.length];
for(int i = 0; i < lis.length; i++)
1is2[i] = f.apply(1is[il);
return lis2;
}
}

class Case_Map{
static int[] case_map(BoolFun f, IntFun g, IntFun h, int lis[]){
//complete this method



