
1. Give IR translations for:

(a) [break]L

(b) [x]Lt,Lf (where x is a variable)

(c) [e1||e2]Lt,Lf (using short-circuit evaluation for e1 and e2)

(d) Generate code for the repeat-until statement: “repeat S until e” executes S and tests e,
and repeats until e becomes true. Thus, it is equivalent to “S; while !e do S”.

1

2. Write APL expressions for the following calculations.

(a) the average of the numbers from 1 to n

(b) the sum of the squares of the elements of a vector V

(c) the product of all positive elements of a vector V

(d) a matrix with the numbers 1, 2, ..., n on the diagonal and 0 everywhere else. You may
use the function idmat(x) to produce the identity matrix of size x.

3. (a) Name the two parts of a compiler’s front end.

(b) Name the two parts of a compiler’s back end.

2

(c) What are the two outputs of the front end?

4. (a) Give two advantages of the copying garbage collection algorithm over the non-copying
(mark-and-sweep) algorithm.

(b) Give two advantages of the non-copying (mark-and-sweep) garbage collection algorithm
over the copying algorithm.

(c) Reference counting is not a popular algorithm. What is its major drawback?

3

5. (a) What is the type of the following function? fun f -> fun g -> fun x -> f (g x)

(b) Write an OCaml function that reverses a list, using fold right instead of explicit recursion.

(c) Use map to write a function map first f l which applies f to the first element of each item
in l, assuming that l is a list of pairs.

(d) Write a function curry that converts a function f on pairs to curried form. In other
words, if f is defined by let f (x,y) = e for some expression e, curry f should return the
function g defined by let g x y = e.

(e) Using fold right and no explicit recursion, define a function that concatenates the ele-
ments of a string list.

4

6. Recall that sets can be defined by type ’a set = ’a -> bool. For the following problems,
you may use any previously defined functions on sets, and any library functions from the List
library.

(a) Write an OCaml function add list such that add list lst s returns a set that contains all
the elements of s, and also all the elements in lst.

(b) Write an OCaml function has list such that has list lst s returns true if every element of
lst is in s, and false otherwise.

(c) Write an OCaml function image such that image f lst returns the set of values produced
by applying f to the elements of lst. You may use your solutions from the previous parts.

5

7. Write a function object for case map (see the OCaml definition below). For the sake of
simplicity, we assume that f : int -> bool, g,h : int -> int.

let case map f g h lis = map (fun x -> if (f x) then (g x) else (h x)) lis;;

Your answer:

interface BoolFun{
boolean apply(int n);

}
interface IntFun{
int apply(int n);

}

class Map{
static int[] map(IntFun f, int lis[]){

int lis2[] = new int[lis.length];
for(int i = 0; i < lis.length; i++)
lis2[i] = f.apply(lis[i]);

return lis2;
}

}

class Case_Map{
static int[] case_map(BoolFun f, IntFun g, IntFun h, int lis[]){

//complete this method

}
}

6

